locked59 Intranet



Magnetic materials

1. Low-dimensional magnetism, frustration and quantum effects

Catherine Guillot-Deudon (IR), Christophe Payen (PR), Mélanie Viaud (IE)

Some crystalline materials have unusual magnetic properties because they do not exhibit a magnetic transition although the strength of the magnetic interactions and the size of the crystallites favor the magnetic order at low temperature. The magnetic state observed at low-temperature can be a "spin liquid" due to the low dimension of the magnetic network, to frustration, or to quantum effects. In this context, we study materials that contain transition metals distributed in the crystal structure on a particular network (spin chains or networks made of triangles, for example). Spin liquids are of considerable interest in condensed matter physics and offer perspectives in the field of quantum information.

Figure – Néel order in an antiferromagnetic (AF) material (a). The Néel order can be destabilized by thermal or quantum fluctuations in low-dimensional materials (b) or in the presence of magnetic frustration in, for instance, a triangle (c) or in a Kogome lattice (d).

Dynamic structure factor (S(Q,ω)) of the S=1 quasi-one dimensional Heisenberg antiferromagnet : neutron scattering study on AgVP2S6
H. Mutka, C. Payen, P. Molinie, J.L. Soubeyroux, P. Colombet, A.D. Taylor
Phys. Rev. Lett., 67, 497-500 (1991)

Evidence of quantum criticality in the doped Haldane system Y2BaNiO5
C. Payen, E. Janod, K. Schoumacker, C.D. Batista, K. Hallberg, A.A. Aligia
Phys. Rev. B, 62, 2998-3001 (2000)

Spin correlations in the pyrochlore slab compounds Ba2Sn2Ga3+xZnCr7-xO22
P. Bonnet, C. Payen, H. Mutka, M. Danot, P. Fabritchnyi, J. R. Stewart, A. Mellergard, C. Ritter
Journal of Physics : Condensed Matter, 16, S835 - S842 (2004)

Neutron spin-echo investigation of slow spin dynamics in kagomé-bilayer frustrated magnets as evidence for phonon assisted relaxation in SrCr9xGa12 9xO19
H. Mutka, G. Ehlers , C. Payen, D. Bono, J.R. Stewart, P. Fouquet, P. Mendels,J.Y. Mevellec, N. Blanchard, C. Collin
Phys. Rev. Lett., 97, 047203 (2006)

Singlet Ground State of the Quantum Antiferromagnet Ba3CuSb2O9
J. A. Quilliam, F. Bert, E. Kermarrec, C. Payen, C. Guillot-Deudon, P. Bonville, C. Baines, H. Lutkens, P. Mendels
Phys. Rev. Lett., 109, 117203 (2012)


  • Laboratory of Physics of the Solids, Orsay
  • Institut Louis Néel, Grenoble
  • Laue Langevin Institute, Grenoble
ANR and contracts

ANR SPINLIQ 2013-2016

2. Multiferroic or magnetoelectric materials

Christophe Payen (PR), Philippe Deniard (DR), Rémi Dessapt (MCF), Pascaline Patureau (doctorante 2012-2015) Lynda Meddar (post-doc CNRS 2008-2009)

We are interested in materials whose dielectric properties are coupled to magnetic properties. Among these "magnetoelectric" materials, some are multiferroic. In a magnetoelectric multiferroic material, a ferroelectric order coexists with a magnetic order in a certain temperature range. Magneto-electric and multiferroic materials have potential applications as sensors or memories. Our experimental approach consists in preparing and characterizing materials and in understanding their properties (magnetic properties in particular) and the relationships between these properties, the chemical composition, the crystal structure, and the micro-structure or morphology of the selected material. A theoretical approach can allow to better understand the properties of these materials.

 multif1    multiferroic or magnetoelectric materials

Magnetic and dielectric properties of magnetoelectric materials


Persistent Type-II Multiferroicity in Nanostructured
MnWO4 Ceramics [P. Patureau et al., Chem. Mater (2016)]

  • Philippe Deniard (Research Director), Rémi Dessapt (Associate Professor), C. Payen (Professor)
  • Pascaline Patureau (PhD research student, 2012-2015)
  • Lynda Meddar (CNRS post-doc fellow, 2008-2009)

Effect of nonmagnetic substituents Mg and Zn on the phase competition in the multiferroic antiferromagnet MnWO4
L. Meddar, M. Josse, P. Deniard, C. La, G. André, F. Damay, V. Petricek, S. Jobic, M-H Whangbo, M. Maglione, C. Payen
Chem. Mater. 21, 5203-5214 (2009)

Magnetic phase diagram of multiferroic MnWO4 probed by ultrasound
V. Felea, P. Lemmens, S. Yasin, S. Zherlitsyn, K.Y. Choi, C.T. Lin, C.Payen
J. Phys.: Condens. Matter 23, 216001 (2011)

Increasing the phase-transition temperatures in multiferroic MnWO4 by Mo-doping
L. Meddar, M. Josse, M. Maglione, A. Guiet, C. La, P. Deniard, S. Jobic, C. Lee, C. Tian, M-H Whangbo, C. Payen
Chem. Mater. 24, 353-360 (2012)

Incorporation of Jahn-Teller Cu2+ ions into magnetoelectric multiferroic MnWO4 : structural, magnetic and dielectric permittivity properties of Mn1-xCuxWO4
P. Patureau, M. Josse, R. Dessapt, J.-Y. Mevellec, F. Porcher, M. Maglione, P. Deniard and C. Payen
Inorg. Chem. 54 , 10623-10631 (2015)

Persistent type-II multiferroicity in nanostructured MnWO4 ceramics
P. Patureau, R. Dessapt, P. Deniard, U-Chan Chung, D. Michau, M. Josse, C. Payen, and M. Maglione
Chem. Mater. 28, 7582-7585 (2016)


  • Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS, Université de Bordeaux 1
  • Laboratoire Léon Brillouin, CEA-CNRS
  • Department of Chemistry, North Carolina State University, Raleigh (USA)
  • Institute for Condensed Matter Physics, TU Braunschweig, Germany
Downloadhttp://bigtheme.net/joomla Joomla Templates