locked59 Intranet

 

 

PCM group||Plasmas and thin films

ANR BiBOP- english

Bi-Based nanOmaterials for Photocatalysis


From October 2024 to September 2028

 

Coordinator Laboratory of the project : Institut de Chimie de Clermont-Ferrand, ICCF

Coordinator : Angélique BOUSQUET

 

IMN coordinator of the project: Mireille RICHARD-PLOUET, DR (équipe PCM)

 

Partners :
Institut Pascal-Clermont-Ferrand, ICCF

Institut Français du Pétrole Energie Nouvelle, IFPEN

 

Persons of IMN involved :
Maryline LE GRANVALET (MC UNIV), Nicolas GAUTIER (IE CNRS),
Christophe CARDINAUD (DR CNRS), Aurélie GIRARD (MC UNIV), Etienne JANOD (DR CNRS), Bernard HUMBERT (PR UNIV), Jean-Yves MEVELLEC (IR CNRS), Franck PETITGAS (AI UNIV)

 

Total financing : 511 151,80 € with 171 601,79 € for IMN

 

Discovering new materials is still the most pivotal topics in production of solar fuels or chemical products from CO2 photoconversion. Bismuth oxyfluorides seem attractive photocatalysts since we can adapt their composition for band engineering. At ICCF, it was demonstrated, that this control is achieved by sputtering a Bismuth target in various Ar/O2/CF4 atmospheres. Moreover, by tuning the reactive gas flow rates, we are able to form in one-pot Bi/ BiOxFy heterojunctions, where the controlled content of Bi leads to enhanced photocatalytic activity. First tests at IFPEN showed that they present a promising photoconversion efficiency and a good selectivity for CO, a solar fuel. To improve these performances, the BiBOP project proposes to use Oblique Angle Deposition (OAD) and “sputtering onto ionic liquid” techniques, compatible with PVD one, to control the nano-hierarchization of these photocatalytic heterojunctions and to investigate its influence on CO2 photo-conversion.

ICCF, which possesses an expertise in reactive sputtering, will be in charge of the Bi-based material nano-structuration by these innovative techniques. The project will also benefit from expertise in materials characterization of IMN, which will perform its advanced local techniques, such as their S/TEM “Nant’Themis”, and will develop in situ analyses, under stimuli. This experimental data will be confronted to simulation of electromagnetic properties, thanks to the IP’s skills. The BiBOP project will also gather a major French actor in catalysis, IFPEN, which will evaluate the CO2 photo-conversion performance of Bi-based nanostructures and bring its knowledge on photo-catalytic phenomena.

Finally, the BiBOP project will use innovative synthesis processes but is mainly focused on the development of new Bi-based functional materials in a characterization / simulation approach and aims to address societal issue about the production of safe and clean energy.

 

ADN-english

Advanced Dielectric Nanocomposite thin films processed by hybrid aerosol /Pressure plasma for microelectronic capacitor applications

March 2025 – Sept 2029

Coordinator Laboratory of the project : LAPLACE, Toulouse

IMN Coordinator of the Project: Antoine GOULLET PR UNIV (PCM team)

Persons of IMN involved :
Marie-Paule BESLAND (DR CNRS), Mireille RICHARD (DR CNRS), Nicolas GAUTIER (IE CNRS), Nicolas STEFFANT (IE UNIV), Franck PETITGAS (AI UNIV)

Total Financing: 389,15 k€  with 156,5k€ for IMN


According to the state of the art, the improvement of the dielectric materials performances for microelectronics applications and more particularly for Metal‐Insulator‐Metal (MIM) capacitor requires the development of nanostructured

materials. The main issue is related to the increase of the dielectric permitivity and the breakdown electric field, as well as maintaining a low leakage current. In this

context, the objective of the ADN project is to design and optimize a nanostructured material (nanocomposites and / or multilayers), based on TiO2 and SiO2, to increase the dielectric permitivity while keeping leakage currents low.

In such a way, we will develop and optimize an innovative elaboration process based on a low pressure hydrid plasma method with injection of colloidal solutions

containing TiO2 nanoparticles. This process optimization needs a fine understanding of the plasma/aerosol interactions, leading to the modification of nanoparticle/matrix interface and consequently to the formation of the nanocomposite thin inorganic layer. Following this, we will investigate how the nanostructuration (nanoparticle concentration and dispersion state, interfaces...) influence on dielectric properties.

To reach this goal, multilayers and nanocomposites thin film will be modelled and characterized at macro and nanoscale using techniques derived from atomic force microscopy (AFM). The most efficient nanocomposite films, in term of high dielectric permitivity and low leakage current will be identified. Finally, leveraging the insights gleaned from nanocomposites and multilayer stacks characterization, along with the results from electrical modeling, we will proceed to design and evaluate advanced multilayer structures comprising alternating SiO2 and nanocomposite layers.

ADN

Advanced Dielectric Nanocomposite thin films processed by hybrid aerosol /Pressure plasma for microelectronic capacitor applications

English Version

Mars 2025 – Sept 2029

Laboratoire coordinateur du projet : LAPLACE, Toulouse

Coordinateur IMN du projet : Antoine GOULLET PR UNIV (équipe PCM)

Personnels IMN impliqués :
Marie_Paule BESLAND (DR CNRS), Mireille RICHARD (DR CNRS), Nicolas GAUTIER (IE CNRS), Nicolas STEFFANT (IE UNIV), Franck PETITGAS (AI UNIV)

Financement total: 389,15 k€  dont 156,5k€ pour l’ IMN


Les capacités Métal‐Isolant‐Métal (MIM) passe par le développement de nouveaux matériaux nanostructurés 2D ou 3D. Le principal verrou réside en l’augmentation de la permitivité diélectrique et du champ de claquage, tout en maintenant un courant de fuite faible.

Dans ce contexte, le projet ADN vise à concevoir et élaborer des couches minces nanostructurées (nanocomposites et multicouches), à base de TiO2 et SiO2. Elles permettront d’augmenter la permitivité diélectrique tout en conservant des courants de fuite faibles. Pour ce faire, nous utiliserons un procédé de fabrication innovant basé sur un procédé plasma hydride à basse pression couplant l’injection de solutions colloïdales de nanoparticules de TiO2 et le dépôt de la couche de SiO2 par dépôt chimique en phase vapeur assisté par plasma (PECVD pour Plasma Enhanced Chemical Vapor Deposition).

L’optimisation de ce procédé passe par la compréhension de l’interaction plasma/aérosol conduisant à la formation de la couche nanocomposite. En parallèle, nous étudierons les propriétés électriques de ces couches et plus particulièrement l’influence de la nanostructuration du matériau nanocomposite (concentration et dispersion des nanoparticules, interfaces, …) sur les propriétés diélectriques. Pour cela, les structures nanocomposites et/ou multicouches seront modélisées et caractérisées à l’échelle macroscopique et nanométrique par des techniques dérivées de la microscopie à force atomique (AFM).

Les couches minces nanocomposites les plus performantes, en termes de permitivité diélectrique élevée et de faible courant de fuite seront identifiées. Enfin, grâce aux informations extraites de la caractérisation électrique des empilements et matériaux nanocomposites, ainsi que des résultats de la modélisation, nous proposerons une architecture innovante multicouches constituée d’une alternance de couches de SiO2 et de nanocomposites. Ce nouveau dispositif sera élaboré et évalué.

Downloadhttp://bigtheme.net/joomla Joomla Templates