locked59 Intranet

 

 

PMN||Physique des Matériaux et Nanostructures

ANR CADENA English

Chemically Assisted graphitization of DEtonation NAnodiamonds for heterogeneous catalysis

Oct 1st 2025 – Mars 31th 2029

 

Coordinator Laboratory of the project : Institut de Chimie de Clermont-Ferrand (ICCF UMR 6296)

Project Coordinator : Katia GUERIN, Professor

 

IMN Coordinator of the project : Chris EWEL DR CNRS (PMN team)

 

Partners :
Institut de Chimie de Clermont-Ferrand (ICCF UMR 6296, Université de Clermont Auvergne (UCA), Clermont-Ferrand)

Institut Jean Lamour, IJL (UMR CNRS 7198, Université de Lorraine, Nancy)

Institut de Chimie et Matériaux de Poitiers, IC2MP (UMR CNRS 7285, Université de Poitiers)

Syensqo "(previously Solvay)", Bruxelles, Belgique

 

Persons of IMN involved :
Chris EWEL (DR CNRS), Post Doc

Total Financing : 614 000€ with 150 390€ for IMN

 

 


CADENA is a cutting-edge research project focused on developing cleaner, safer, and more efficient chemical processes to produce fluorinated molecules—vital ingredients in medicines, agrochemicals, and batteries. Traditional fluorination methods often use toxic substances and create harmful waste. CADENA offers a greener solution by designing new catalysts made from nanodiamonds—tiny particles with a stable diamond core and tunable surfaces.

The project aims to create catalysts that can efficiently replace toxic materials like chromium, which are still used in industry. By chemically modifying nanodiamonds to increase their activity and resistance to harsh conditions (like the presence of hydrogen fluoride gas), researchers hope to make the production of fluorinated compounds more selective, sustainable, and scalable.

 

Fluorinated nanodiamonds

( July 2020 Materials 13(15):3337 DOI: 10.3390/ma13153337 )

CADENA brings together experts in chemistry, nanomaterials, and industrial processes from leading French laboratories and the company Syensqo. The team will explore how to fine-tune the surface of nanodiamonds using advanced techniques and computer simulations, test their performance in real reactions, and evaluate their industrial potential.

Ultimately, CADENA aims to support the transition to more sustainable chemical manufacturing, reduce environmental impact, and strengthen innovation in key industries such as energy storage and pharmaceuticals.

 

ANR CADENA (2)

Chemically Assisted graphitization of DEtonation NAnodiamonds for heterogeneous catalysis
(Graphitisation assistée chimiquement de détonations de nanodiamants pour la catalyse hétérogène)

 english version

01 oct 2025 – 31 mars 2029

 

Laboratoire coordinateur du projet : Institut de Chimie de Clermont-Ferrand (ICCF UMR 6296)

Coordinateur du projet : Katia GUERIN, Professeure des universités

 

Coordinateur IMN du projet : Chris EWEL DR CNRS (équipe PMN)

 

Partenaires :
Institut de Chimie de Clermont-Ferrand (ICCF UMR 6296, Université de Clermont Auvergne (UCA), Clermont-Ferrand)

Institut Jean Lamour, IJL (UMR CNRS 7198, Université de Lorraine, Nancy)

Institut de Chimie et Matériaux de Poitiers, IC2MP (UMR CNRS 7285, Université de Poitiers)

Syensqo "(anciennement Solvay)", Bruxelles, Belgique

 

Personnels IMN impliqués :
Chris EWEL (DR CNRS), Post Doc

 

Financement total: 614 000€ dont 150 390€ pour l’ IMN

 


CADENA est un projet de recherche innovant qui vise à rendre la production de molécules fluorées plus propre, plus sûre et plus efficace. Ces molécules sont essentielles dans des domaines comme la pharmacie, l’agrochimie et les batteries. Aujourd’hui, les méthodes utilisées pour les produire reposent souvent sur des substances toxiques et génèrent des déchets polluants.

CADENA propose une alternative écologique en développant de nouveaux catalyseurs à base de nanodiamants. Les nanodiamants sont de minuscules particules de diamant avec des propriétés chimiques modulables. En modifiant leur surface de façon contrôlée, les chercheurs souhaitent améliorer leur performance. Ils désirent les voir résistants aux conditions extrêmes comme lors de l’utilisation de gaz fluorés très réactifs.

 

Fluorinated nanodiamonds

( July 2020 Materials 13(15):3337 DOI: 10.3390/ma13153337 )



Le projet réunit plusieurs laboratoires français de renom et l’entreprise Syensqo. Ensemble, ils vont explorer comment rendre ces nanodiamants plus actifs et sélectifs.  Pour ce faire des traitements chimiques avancés et des simulations informatiques seront utilisés. Ces catalyseurs seront ensuite testés dans des réactions réelles et leur potentiel industriel sera évalué.



L’objectif final de CADENA est de fournir des procédés plus durables, sans substances toxiques, et adaptés à une production à grande échelle. Ces procédés permettront ainsi de contribuer à la transition écologique dans des secteurs clés comme l’énergie et la santé.

 

ANR TEM-MOF-English

ANR TEM-MOF

Gestion de la thermicité des matériaux MOF

January 2024 – December 2027

Projet coordinator :  Thomas DEVIC DR CNRS (ST2E team)

Persons of IMN involved :  Stéphane GROLLEAU (IE UNIV), Nicolas STEPHANT (IE UNIV)

Total financing :539 k€ with 182k€ for IMN

 

Metal-Organic Frameworks are emerging adsorbents presenting advantageous adsorption capacities, up to 60% higher than those of conventional activated carbons or zeolites. Consequently, for the two worldwide major issues of industry decarbonation and energy transition, those materials offer great perspectives such as CO2 capture and energetic gas (H2, CH4) storage. Nevertheless, those enhanced storage capacities are related to equally important inhibiting thermal effects (exothermic under adsorption, endothermic under desorption). At industrial scale, those thermal effects would induce major reduction in performances (capacity, selectivity and charge/discharge kinetics) even hazard issues (hot spots). Up to date, whereas the literature on MOF for gas storage or capture is plethoric, only few research efforts were devoted to the thermal management of MOF. The project is fully devoted to it, gathering a complementary consortium of partner experts on the various multidisciplinary aspects from MOF elaboration to the targeted applications. We will especially focus our work on the development of MOF/graphite conducting composites, which will for example be of interest for isothermal-diabatic applications such as CO2 capture in TSA processes. The 4 years research effort is shared between MOF and related composites elaborations and characterizations, comparison between raw MOF and composites, assessments of applications related performances, multi-scale modelisation (from composite material to industrial process) and lab-scale pilot tests. For all steps, from academic research to industrial concerns, environmental impacts are continuously considered.

 

ANR AZOTICS-English

Nanoparticules photostimulables pour l'imagerie d'inflammation en système microvasculaire par microscopie photoacoustique à fort contraste
(Projet-ANR-21-CE06-0034)Azotics

Janvier 2021 - Décembre 2025

Partenaire IMN du projet : Stéphane CUENOT   (équipe PMN)

Coordinateur :
Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM Nantes)
Partenaires :
Laboratoire Interdisciplinaire de Physique (LIPHY Saint Martin d'Hères)
Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA Nantes)
Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications (TIMC-IMAG Grenoble)

The recent rise of high-resolution and depth imaging techniques like photoacoustic microscopy (PA) stimulates novel research areas in biology. In vivo tracking of immune cells, signaling inflammation and severe pathologies thereof, is one of them and attracts great interest. The interdisciplinary AZOTICS project thus aims at addressing the current PA microscopy limitations by fabricating innovative biocompatible elastomeric nanolabels relying on azo photochromes. Photostimulated actuation mechanisms will help amplify the PA contrast based on thermal expansion. The photoinduced mechanical deformations of single nano-objects will be assessed at the nanoscale using atomic force microscopy. Their PA imaging capability will be valued through an in vitro, in cellulo and in vivo continuum involving monocyte and macrophage staining, microfluidic systems mimicking microvasculature, and inflammatory models.


ANR SMARTIES-English

Conception d'hydrogels injectables à base d'un exopolysaccharide marin Smartiespour l'ingénierie ostéo-articulaire
(Projet-ANR-22-CE52-0005)

Octobre 2022 - Février 2027

Partenaire IMN du projet : Stéphane CUENOT  (équipe PMN)

Coordinateur :
Institut Francais de Recherche pour l'Exploitation de la Mer (IFREMER Nantes)
Partenaires :
Inserm RMeS Nantes

Personnels IMN impliqués :
Jean LE BIDEAU (PR UNIV)


Osteochondral injuries remain an unmet medical need with huge clinical expectations, since untreated they often evolve to osteoarthritis and ultimately lead to total joint replacement. Current surgical treatments, including cell-based therapies, such as autologous chondrocyte implantation allow only a partial functional recovery. To overcome the drawbacks related to these techniques (limited cell availability, donor site morbidity, logistical and regulatory complexity), alternative cell-free approaches have recently been considered with a growing interest. In this context, SmartIEs project aims to explore a cell-free strategy to repair osteochondral lesions by developing a smart hydrogel scaffold that will very efficiently recruit regenerative progenitor cells and stimulate their differentiation into appropriate cell lineages capable of regenerating both cartilage and subchondral bone. This strategy will be carried out with two main objectives. In the first objective, an injectable thermoresponsive hydrogel based on a marine bacterial exopolysaccharide (EPS) endowed with glycosaminoglycan (GAG)-mimetic properties will be developed. The thermoresponsive property will arise from the poly(N-isopropylacrylamide) (pNIPAm) grafted on the polysaccharide backbone. By loading this hydrogel with EPS-based microgels encapsulating two growth factors (GFs), either Transforming Growth Factor-b1 (TGF-b1) or Bone Morphogenetic Protein-2 (BMP-2), a bifunctional hydrogel will be formed. In vivo, progenitor cells will then migrate through this deformable, fast relaxing hydrogel and differentiate by interacting with appropriate GFs to simultaneously promote cartilage (TGF-β1) and bone (BMP-2) regeneration. The second objective will consist in the biological evaluation of the bifunctional hydrogel containing GF-loaded microgels to repair osteochondral defects in a relevant large animal model.

 

ANR FASTRAIN - English

Contrôle des transitions de phases ultrarapides dans les matériaux quantiques par la voie athemique des ondes de déformation


Octobre 2023 – Octobre 2027

Coordinateur IMN du projet :  Etienne JANOD (équipe PMN)

Personnels IMN impliqués :  Laurent CARIO (équipe PMN), Benoit CORRAZE (équipe PMN), Julien TRANCHANT (équipe PMN), Olivier HERNANDEZ (équipe MIOPS), Jean-Yves Mevellec, Bernard Humbert (équipe PMN) et Florent Pawula (équipe PMN)

 

Driving matter far away from equilibrium by ultrafast laser pulse opens new avenues to direct materials to other macroscopic phases through non-thermal dynamical pathways.

The FASTRAIN project aims to unravel the physical backgrounds of ultrafast phase transitions in quantum materials caused by a universal non-thermal mechanism, whereby dynamic strain waves are directly photoinduced in the material and trigger a phase transformation. This uncharted mechanism is however potentially present in any photoinduced transitions involving volume and/or ferroelastic deformation. Photoexcitation by an ultrafast laser indeed generates an elastic stress, which will be relaxed by launching a volume (and/or symmetry change) strain wave. In this project, we will focus on Mott insulators, a large class of correlated quantum materials widely studied since half a century. We plan to demonstrate and rationalize the crucial role of the strain wave mechanisms on the photoinduced Mott insulator to metal transitions, which are inherently coupled to a volume change. Our time-resolved preliminary results probing electronic (reflectivity) and structural (X-ray diffraction) properties have established that a laser pulse drives the Mott insulator V2O3 towards a complete insulator-metal transition controlled by a strain wave. In this project, we will clarify the respective impact of symmetry breaking and volume change on the multiscale dynamics along the photoinduced transition pathway. Moreover, we will explore the link between local precursors and macroscopic phase transformation. Finally, we will clarify the conditions favoring the insulator-to-metal conversion, which can be complete in granular thin films and limited in bulk crystals. The FASTRAIN project brings together a wide range of expertise ranging from correlated quantum materials (IMN, GREMAN) to the physics of photoinduced phase transitions (IPR, ESRF). The ideas developed in FASTRAIN will impact other fields, especially the broad class of quantum materials presenting a phase transition involving elastic deformations. It will also shed light on our understanding and assess the ultimate performance of future innovative devices, such as hardware neural networks for artificial intelligence based on Mott insulators.

 

ANR COBEDIT - English

Contrôle des liaisons covalentes par la topochimie des matériaux chalcogénures


Octobre  2023 – Octobre 2027

Coordinateur IMN du projet :  Shunsuke SASAKI (équipe PMN)

Personnels IMN impliqués : Laurent Cario (équipe PMN), Stéphane Jobic (équipe MIOPS), Isabelle Braems (équipe ID2M), Maité Caldes (équipe MIOPS)

 

The COBEDIT project aims at exploration of new functional materials using low temperature structural transformation by topochemistry of lamellar materials containing covalent anion-anion bonds. This topochemistry employs precursor materials in which anionic chalcogen oligomers are sandwiched between cationic sheets. These anionic moieties (Qn)2- (Q = S, Se) are found to be highly reactive with zerovalent metals leading to either intercalation of the transition metal cations into the host lattices or de-insetion of half of the chalcogen atoms upon the use of alkaline metals. Based on the topochemical reactions exploiting the concept of anion redox, the project will set up rational designs of new low-dimensional quantum materials as well as semiconductors potentially useful as optical or (photo)catalytic materials.

 

ANR DISLOCARBON - English

 width=

 

Dislocations dans les nanomatériaux carbonées en couches

Janvier 2024 – Juin 2027

Coordinateur IMN du projet :  Chris Ewels (équipe PMN)

Personnels IMN impliqués : Maxime Bayle (équipe PMN), Doctorant (arrivée en Septembre 2024)

 

Abstract: Layered dislocated materials are fundamentally different from their non-dislocated counterparts.

The aim of the project is to explore and extend dislocation theory for 2D layered materials, to understand dislocation core structures, migration and interaction with impurities such as water and cations like Li and Na. To explore the role of dislocations in intercalation, to guide the design of dislocations in graphite battery electrodes for high-speed metal intercalation and deintercalation.

The team leading this research project comprises three partners in Nantes, Bordeaux (ISM) and Lyon (LMI), as well as three foreign associates in the UK (Loughborough), Spain (Zaragoza) and Australia (Curtin).

 

 

Opération "femme de science" - 2024 - Portrait de Patricia Abellan

Abellan_Patricia_DR17

La délégation Bretagne et Pays de la Loire du CNRS participe cette année encore à la mise en avant de parcours de femmes scientifiques à l’occasion du 11 février – journée des femmes et filles de sciences, et du 8 mars – journée internationale des droits des femmes. Chaque semaine entre ces deux dates, un entretien d'une physicienne, à l’occasion de l’année de la physique 2023-2024.

C'est Patricia Abellan, chercheuse CNRS dans l'équipe Physique des Matériaux et Nanostructures (PMN) qui a été interviewée dans le cadre de cette opération.

Retrouvez l'entretien complet sur le site de la Délégation Régionale du CNRS.

ERC DREAM-SWIM

logoPatricHD

Dosimetry of Ultra-High Dose-Rate Electron Beams at Solid-Water Interfaces in Electron Microscopy: A Key Advance in Hydrated Samples Research

Juin 2024 - Mai 2029

Coordinateur IMN du projet : Patricia ABELLAN  (équipe PMN)


Electron microscopy (EM) has played a key role in the discovery of many new materials, as well as the elucidation of the role of defect structures and interfaces on material properties and behaviour. Current electron microscopes are capable of maintaining the relevant hydrated state of samples by means of cryofixation techniques or by using dedicated liquid cells. This opens up the possibility of investigating crucial interfaces, such as those in complex aqueous systems that, despite their significance, remain poorly understood. The study of water-solid interfaces in the EM is currently limited by the sensitivity of aqueous samples and interfaces to the action of the electron beam. Knowledge of the fundamental chemical processes induced by interaction with the electron beam is needed for the interpretation of results, prediction and design of experiments and to potentially mitigate electron-beam effects. Here, I propose to develop novel instrumentation and approaches to allow for the direct determination of the yields of radicals and molecules produced as well as reaction kinetics in the EM and at the interface between materials and aqueous solutions. This new concept will permit us to precisely assess the effect of important factors in the radiolysis of aqueous solutions inside the EM such as the very high electron dose rates, the supports, liquid volume, temperature or the effect of nanomaterials’ interfaces. This newly accessible knowledge will lead to the interpretation of numerous EM experiments and will be used to develop novel data-informed adaptive scanning approaches specifically designed for in situ dynamic acquisition with minimal chemical effects in the samples. An important goal of this project is to conceive new predictive models for the radiolytic chemistry produced during EM experiments, which will open the door to the future design of mitigation procedures for radiolysis damage in EM.

Downloadhttp://bigtheme.net/joomla Joomla Templates